

Infrastructure Economics

OLLI – Univ. of N. Carolina, Wilmington
January 31, 2022

Jon D. Haveman, Ph.D.

1

National Economic Education Delegation

Vision

- One day, the public discussion of policy issues will be grounded in an accurate perception of the underlying economic principles and data.

Mission

 NEED unites the skills and knowledge of a vast network of professional economists to promote understanding of the economics of policy issues in the United States.

NEED Presentations

- Are **nonpartisan** and intended to reflect the consensus of the economics profession.

- 2

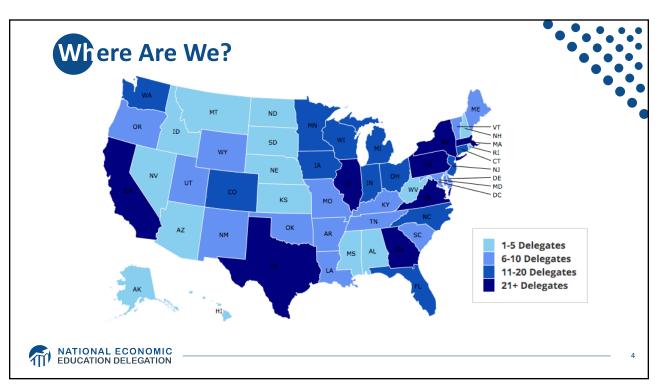
2

Who Are We?

Honorary Board: 54 members

- 2 Fed Chairs: Janet Yellen, Ben Bernanke
- 6 Chairs Council of Economic Advisers
 - o Furman (D), Rosen (R), Bernanke (R), Yellen (D), Tyson (D), Goolsbee (D)
- 3 Nobel Prize Winners
 - o Akerlof, Smith, Maskin

Delegates: 649+ members


- At all levels of academia and some in government service
- All have a Ph.D. in economics
- Crowdsource slide decks
- Give presentations

• Global Partners: 48 Ph.D. Economists

- Aid in slide deck development

3

4

Available NEED Topics Include:

- Coronavirus Economics The U.S. Economy
- Climate Change
- Economic Inequality
- Economic Mobility
- US Social Policy
- Trade and Globalization
- Minimum Wages

- Immigration Economics
- Housing Policy
- Federal Budgets
- Federal Debt
- Black-White Wealth Gap
- Autonomous Vehicles

Credits and Disclaimer

- This slide deck was authored by:
 - Mallika Pung, University of New Mexico Valencia
 - Jon Haveman, NEED
- Disclaimer
 - NEED presentations are designed to be nonpartisan.
 - It is, however, inevitable that the presenter will be asked for and will provide their own views.
 - Such views are those of the presenter and not necessarily those of the National Economic Education Delegation (NEED).

6

- What do we mean by infrastructure?
- Current state of infrastructure in the US
- Infrastructure in economic models
- Why should we invest in infrastructure?
- Policy options to fund infrastructure investments

What is a Useful Definition of Infrastructure?

- Infra- means "below;"
 - So, infrastructure is the "underlying structure" of a country and its economy.
- Miriam-Webster definition of Infrastructure:
 - the system of public works of a country, state, or region
 - \circ $\it also$: the resources (such as personnel, buildings, or equipment) required for an activity
 - the underlying foundation or basic framework (as of a system or organization)
 - the permanent installations required for military purposes

Different Kinds of Infrastructure (& Examples)

- Provide basic services.
 - Electricity, water, broadband (?).
- Improve the performance of the economy.
 - Roads, bridges, airports, seaports.....
 - General R&D?
 - Education
- Make people's lives better.
 - Roads, bridges, airports...
 - Protection from natural disaster
 - Child care, education.

9

9

Another Categorization

- Traffic systems: streets, railways, other transportation
- Utilities and disposal: energy, water, and communication networks
- Intangible
 - Human capital
 - o Education, research facilities
 - o Health systems, social services
- Institutional
 - Legal, economic, and social system
 - Culture, traditions

The Economics of Infrastructure Provisioning, MIT Press, 2015, pg.10

10

Infrastructure – Is it:

• Traditional:

- Roads, bridges, tunnels, airports, seaports, dams, water, electrical, and telephone systems?

Additional:

- Broadband

What about:

- R&D? Human capital? Institutions?

What definition of "infrastructure" makes it most useful today?

- Caregiving?

11

11

What is Infrastructure? – A Recap


• Economic infrastructure:

- Basic services that represent a foundational tool for the economy.
- Can be:
 - Physical structures
 - Systems
 - o Institutions
 - Services
 - Facilities
- We will focus on physical structures, systems, and facilities.

12

Categories of Physical Infrastructure

Transportation

- Highways, roads, bridges
- Mass transit
- Airports, seaports

Water

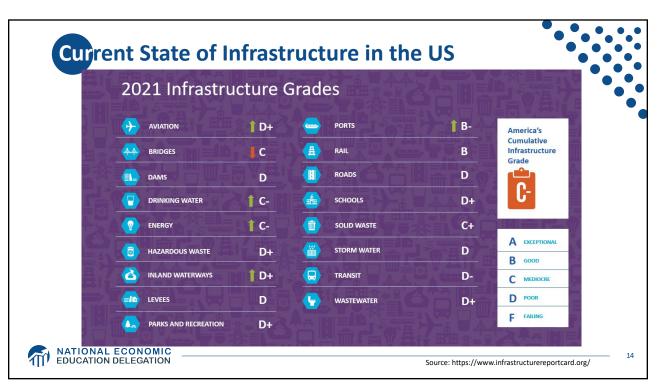
- Supply
- Distribution

Waste management

- Trash, recycling, and wastewater

Energy

- Generation
- Transmission


Communications

- Telephone
- Internet

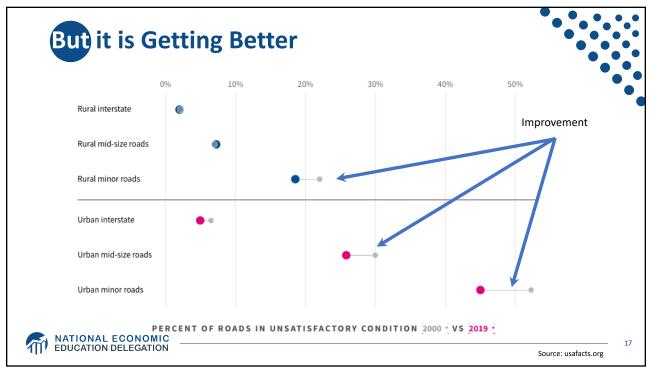
NATIONAL ECONOMIC EDUCATION DELEGATION

13

13

- In 2017, 8.8 billion hours of traffic delay.

o Costing the country \$166 billion in wasted time and fuel.


"The average auto commuter spends 54 hours in congestion and wastes 21 gallons of fuel due to congestion at a cost of \$1,080 in wasted time and fuel."

-- 2019 Urban Mobility Report, Texas A&M Transportation Institute

- 42,060 motor vehicle fatalities in 2020 (8% increase over 2019).

16

Current State of Transportation Infrastructure

Mass Transit

- \sim 6,800 organizations in the U.S. that provide transit services.
- Transit ridership: peaked at 10.7 billion in 2014.
 - o COVID-19 pandemic caused major disruptions across all transit agencies..
- 45% of Americans have no access to transit.
- 50% of passenger trips by bus.
 - o 10% of fleets NOT in "state of good repair".
- 33+% by heavy rail (subway/metro)
 - o 3% of fleets NOT in "state of good repair".

Transit users face increased delays due to service interruptions, and agencies are grappling with growing maintenance and vehicle procurement costs.

18

Current State of Transportation Infrastructure

Aviation

- In 2019, 10 million+ commercial flights
 - Flying ~3 million passengers daily
- National Plan of Integrated Airport Systems (NPIAS)
 - o identifies over 3,300 airports in the U.S. aviation network
- Contributed 5.1% to US GDP
 - Generated 10.6 million jobs
- In 2019, 21% of flights were delayed. Delays were caused by
 - late-arriving aircraft,
 - o air carriers,
 - o weather, and
 - o diverted flights.

19

19

Current State of Transportation Infrastructure

Ports

- 99% of US overseas trade passes through ports
- Los Angeles and Long Beach busiest ports in the US
 - o Top 10 U.S. ports account for 3/4th of U.S. trade
- Congestion decreased port productivity by over 25% over the past decade
 - o COVID-19 pandemic exacerbated the congestion related issues
- Port infrastructure upgrades needed to accommodate new, larger ships
 - need deeper navigation channels

Waterways

- More than 600 million tons of cargo
 - o 14% of annual domestic freight
- Beyond their 50-year design life
- 50% vessels experience delays due to maintenance shutdowns

20

Current State of Water Infrastructure

Drinking Water

- 150,000+ public drinking water systems
- 1 billion+ glasses of drinking water consumed daily
 - o 80% from surface waters such as rivers, lakes, oceans, reservoirs
 - o 20% from groundwater aquifers
- Delivered via 2.2 million miles of pipes
 - o Majority laid in mid-20th century and are aging
 - o An estimated 240,000 water main breaks occur each year
 - o 6 billion gallons of treated drinking water lost daily due to leaking pipes
 - could support 15 million households

21

21

Current State of Water Infrastructure

Wastewater

- 16,000+ wastewater treatment plants
 - o 1.3 million miles of public and private lateral sewers
- Used by 80% of Americans
 - o Likely to serve 56 million more people by 2032
- Structural failure, blockages, and overflows cause at least 23,000 to 75,000 sanitary sewer overflow events each year

22

Current State of Water Infrastructure

Dams

- There are over 91,000 dams in the US providing:
 - o drinking water,
 - o irrigation,
 - o hydropower,
 - o flood control, and
 - o recreation
- Most are privately owned
- Average age 57 years
- By 2025, 7 out of every 10 dams will be over 50 years old
- In 2019, there were 15,600 high-hazard potential dams

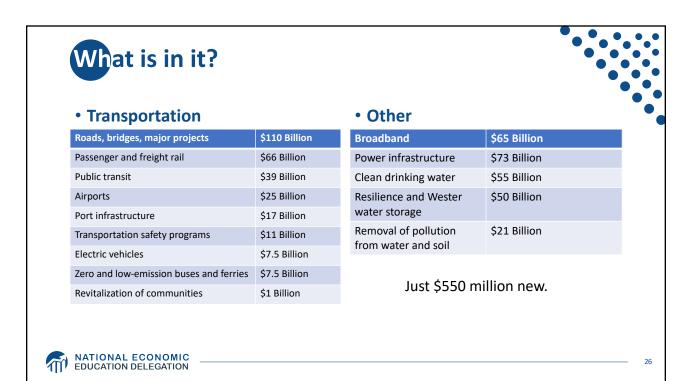
23

23

Current State of Water Infrastructure

Levees

- A network of 30,000 miles of levees
- Levees in the U.S. Army Corps of Engineers Levee Safety Program protect
 - o over 300 colleges and universities,
 - o 30 professional sports venues,
 - o 100 breweries, and
 - o an estimated \$1.3 trillion in property
- Built in the mid-20th century with an average age of 50 years, aging fast
- Levees are crucial with majority of the U.S. population living within 50 miles of a coast



24

The 2021 Infrastructure Package

- Unspent emergency relief funds
- Strengthening tax enforcement crypto currencies
- Revenue generated from higher economic growth
- Increased federal budget deficit

27

What is missing?

- Strategic thinking:
 - Long term thinking, planning, prioritizing.
- Meaningful climate resilience planning.
- Education & R&D.
- Expanding/insuring water supplies.
- · Hazardous waste.

2

Infrastructure Benefits

29

29

Infrastructure in economic models

- Vast macroeconomic literature on relation between infrastructure and economic growth.
- Wide variation in the magnitude of economic effects of infrastructure spending on growth or productivity.

Why Should we Invest in Infrastructure?

Vital ingredient to economic growth

- Facilitates economies of scale, raises productivity A 10% rise in infrastructure assets directly increases Real GDP per capita by 0.7 - 1%.
 - o Assuming increases in spending translate 1-1 to the stock of assets:
 - ~\$50 billion will raise GDP per capita in the US by ~\$300 -\$450.
 - \$100 to \$150 billion in increased GDP.
 - o Productivity growth raises standards of living

31

Vital ingredient to economic growth

- Reduces trade costs by improving access to markets
 - o Port capacity improvement
 - o Reducing traffic congestion
- Reduces effective distances, facilitates trade and agglomeration
- Advances public health by providing clean water and effective sewage systems

Case for Spending More on Infrastructure Maintenance

- Rundown infrastructure increases costs
 - Longer travel time → higher costs for businesses
 - Wear on cars → more spending on car repairs → faster car depreciation
 - Vehicle deterioration → Additional fuel consumption

"The average motorist in the U.S. is losing \$523 annually -- \$112 billion nationally -- in additional vehicle operating costs as a result of driving on roads in need of repair."

-- November 2016 Urban roads TRIP report

• Deferred maintenance is a debt burden on the future generations.

33

Public or Private Infrastructure Investment?

- Nonrival consumption
- Non-excludable use
- → Social benefits might exceed expected financial return.
- → Private sector likely to underprovide key types of infrastructure.
- → Economic case for public provision of infrastructure assets.

Public or Private Infrastructure Investment?

• A few arguments for public provision:

- Provision of public infrastructure increases productivity of private infrastructure.
 - o Incentivizes private capital investment,
 - o Increases labor productivity,
 - o Indirectly increases employment and wages.

35

35

Public or Private Infrastructure Investment?

- Provides short-term stimulus to the economy by creating jobs
- Promotes trade and commerce
- Promotes equity
 - Pays prevailing wages
 - o More demographically inclusive
 - o Encompasses all congressional districts
- Promotes public health and well-being
- Improves public safety
- Affects not just the present but the future generations also

Some of these are more debatable than others

36

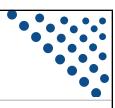
Empirical Evidence on Effect of Gov't Spending

- In studies from 80s, early 90s:
 - A 1% increase in the stock of public capital raised GDP by 0.39%
- In more recent studies
 - by only 0.08% in the short run, 0.12% long run
- In terms of multiplier, most short-term estimates are less than 1
 - Due to negative effects of tax/interest rate increases on private C and I
- Longer term multiplier
 - OECD panel data 1.6
 - US interstate highway system 1.8

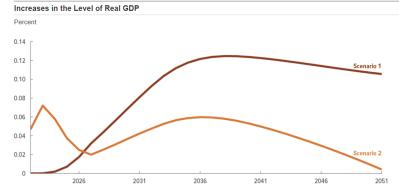
37

37

Empirical Evidence on Effect of Gov't Investment



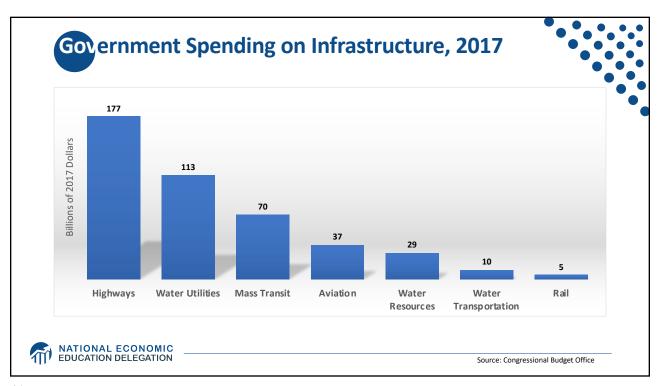
- Estimates from the 2009 American Recovery and Reinvestment Act
 - Each \$100,000 spent led to 0.8 job-years created
 - Highway construction employment unaffected in 2009-10
 - o fell sharply afterwards
 - Significant "crowd-in" of state and local highway spending
 - o For each \$1 of federal grant and additional \$2.30 in state spending

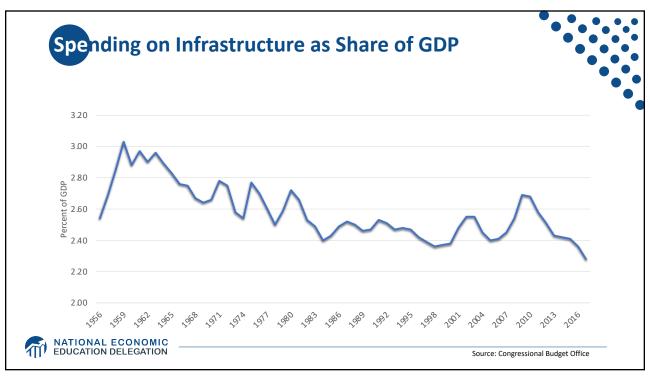


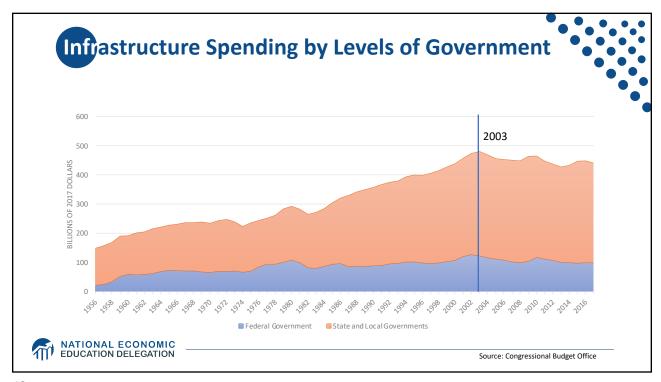
38

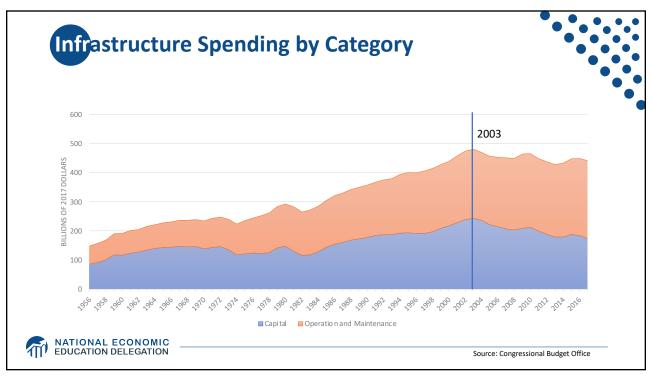
A CBO study on effects of Gov't Spending on Infrastructure on Real GDP

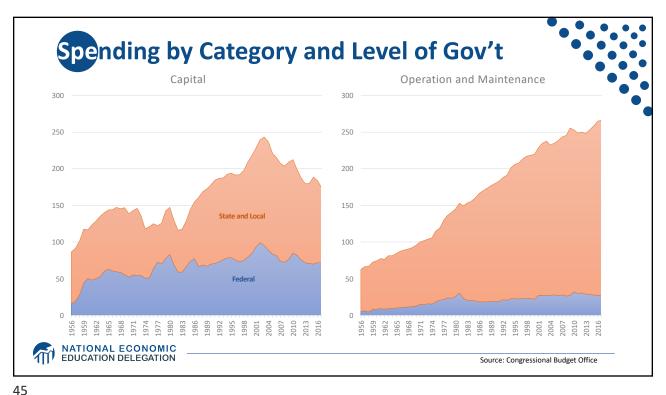
- Two scenarios to finance \$500 billion over 10 years:
 - Reducing gov't noninvestment purchases
 - o *Reduces* net cost by 1/3rd
 - 2. Increasing federal borrowing
 - o Increases net cost by 1/4th

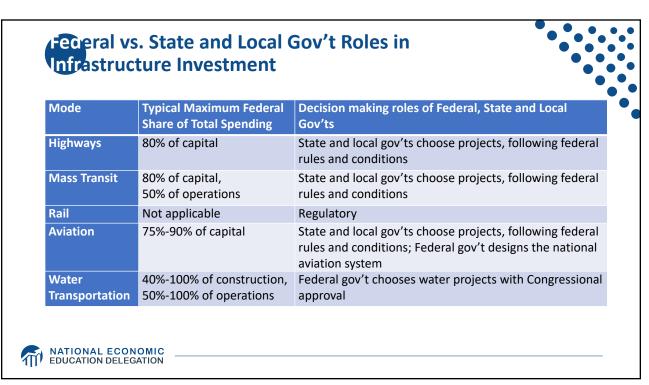

39


39


Infrastructure Investment in the US


- Transportation, drinking water, and wastewater infrastructure
 - mainly funded by the public sector
- Publicly owned transportation infrastructure
 - Highways
- Mass transit
- Aviation
- Water transportation
- Rail
- Publicly owned water infrastructure
 - Water utilities Water resources
- In 2017, Federal, State and Local governments spent
 - \$441 billion on infrastructure
 - 2.3% of gross domestic product





- Federal government provides to state and local governments
 - major financial support for highways, mass transit, aviation, and water utilities.
 - relatively little financial support for water infrastructure

Funding vs. Financing Infrastructure Investment

- Funding
 - Spending current resources
- Financing
 - Issue bonds to be repaid in future
 - Attractive option if government doesn't have funds now
 - Limits future availability of funds
- 1/3rd of public investment between 2007-16 involved federally supported financing.

Sources of Federal Infrastructure Financing

Discretionary spending

- subject to appropriation
- capitalization grants for state banks and
- fund the net subsidy costs of direct federal credit programs

Direct spending

- authorization of mandatory spending
- 2009-10 Build America Bonds program for transportation and water projects
- future programs of tax credit bonds
- Federal tax exemption for the interest paid on various bonds

49

Federal Financing of State and Local Infrastructure

50%+ state and local infrastructure spending financed through

- bonds that provide federal tax preferences or
- federally supported loan programs

• Examples:

- Tax exempt bonds ← Most widely used
- State revolving funds and infrastructure banks (or state banks)
 - o Direct Loans -- loans made using banks' capital funds
 - o Leveraged Loans -- using the proceeds of bank issued tax-exempt bonds
- Tax credit bonds
- Direct federal credit programs

iscal Substitution of Federal Infrastructure Investmen

- A \$1 increase in federal highway grants, reduces state and local spending by 20-80 cents.
- The effect will vary depending on
 - fiscal condition of state and local governments,
 - whether federal spending change is permanent or temporary,
 - magnitude of the spending change,
 - direction of the change

53

- State and local governments own almost all of the nation's transportation and water infrastructure.
- Most of the private-sector investment in these occurs through publicprivate partnerships for publicly owned infrastructure.

What Is a Public-Private Partnership?

Per Engel et al. (2011)

"an agreement by which the government contracts a private company to build or improve infrastructure works and to subsequently maintain and operate them for an extended period (for example, 30 years) in exchange for a stream of revenues during the life of the contract"

- New federal investment tends to favor new construction.
- Traditional procurement separates design, construction and maintenance aspects.
- · Contractors involved in new construction not incentivized to build to minimize long term maintenance costs.
- PPP helps correct this incentive problem.

55

Types of PPP contracts

- Design-Build (DB)
- Design-Build-Operate-Maintain (DBOM)
- Design-Build-Finance-Operate-Maintain (DBFOM)
- Similarly, we can have DBF, DBFM, etc.

Few Public-Private Partnerships in the US

- Colorado I-70 Project
- Denver FasTracks commuter and light rail project in Colorado,
- Goethals Bridge reconstruction project linking New York City and New Jersey
- Bayonne Water Joint Venture LLC project, a water and wastewater PPP in New Jersey
- Automated People Mover (APM) project at Los Angeles International Airport (LAX)
- LaGuardia Airport Terminal B P3 project

57

Few Public-Private Partnerships in the US

- A few unsuccessful P3s in California
 - Route 91 toll lanes in Orange County
 - Route 125 toll road in San Diego County
 - Presidio Parkway project connecting the City of San Francisco to the Golden Gate Bridge

- Make those who use infrastructure more heavily, pay for it.
 - User fees help in appropriately rationing assets to the space.
 - Help in demand management where congestion is an issue

An Alternative Financing Tool – User Fees

- Singapore's congestion pricing model
 - Singapore -- an island nation with land area of 250 sq. miles
 - Limited street capacity in the central business area
 - Heavy congestion
 - Electronic Road Pricing (ERP) System launched in 1998
 - o variable pricing designed to respond to congestion in real-time
 - Complementary policies to ERP
 - o Parking fees inside the restriction zone doubled
 - o Buses and bus frequency increased
 - o HOV+4 lanes established
 - o 15,000 park-and-ride spaces were established outside the restriction zone

Another Aspect of Infrastructure – Broadband

- Talk of a digital divide ubiquitous
 - especially considering the current pandemic
- 21 million+ Americans lack meaningful access to the internet
 - Meaningful access: 25 Mbps download and 3 Mbps upload
 - 14.5 million have no access at all
- Lack of access more common among the less educated, low income, living in rural or suburban areas
- 9 million+ school children lacked internet access for online schoolwork

61

61

Broadband Access

- In 2016, 57% of households in Detroit, MI;
- 49% in Memphis, TN and
- 48% in Cleveland, OH without fixed broadband
- Digital redlining within cities
- Where available, service is often limited to a single service provider natural monopolies
 - Due to high up-front fixed costs of laying fiber optic lines

62

Solutions to the Access Problem

- 2021 Infrastructure Bill
- FCC Launched a \$20 billion Rural Digital Opportunity Fund in February 2020
 - \$6 million budget
 - Target census blocks that were without 25/3 Mbps broadband.
- Taking matters into their own hands, cities and communities:
 - Building municipal infrastructure and cooperatives providing broadband
 - Despite legal barriers or bans on publicly owned networks in 19 states
 - 850+ communities served by a municipal network or cooperative
 - Community-owned networks are less expensive and have more transparent pricing than private ISPs – Harvard Study

63

63

Tech nological Advancements of the Future to the Rescue?

- On June 13, 2020 Elon Musk's SpaceX launched 58 satellites into low earth orbit as part of the Starlink program.
- Aims to provide low-latency (less lag) satellite internet.
- Better internet coverage than traditional communications satellites.
- Could potentially provide high quality internet to homes and businesses without access to cable, fiber, or reliable cellular internet.

64

Enormous Economic Benefits to Access

• Individual benefits:

- Better health and life outcomes.
 - Access to health and education online.
 - Job search and development of digital skills.
- Higher property values.
- Increased population and job growth.
 - Higher rates of business formation.

• Broader economic benefits:

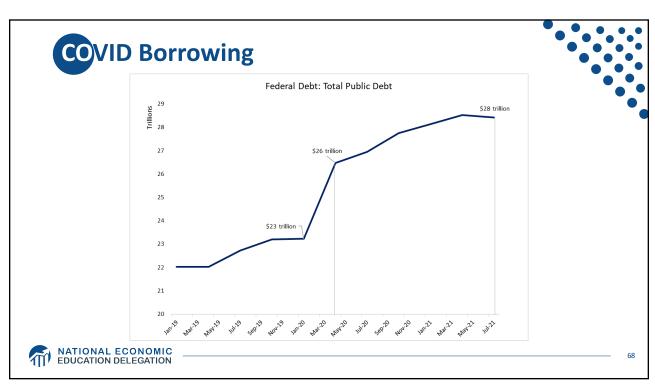
- World Bank
 - 10% increase in access yields a 1.2% jump in real incomes.
- Indiana
 - ROI = 300-400%.

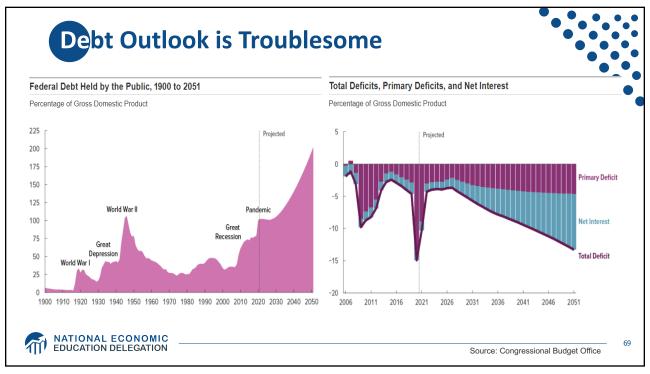
Brookings; The Benefits and Costs of Broadband Expansion, Aug 18, 2021

65


65

Pace of Investment


Too Much, Too Soon? Too Little, Too Late?



- Is the current infrastructure package appropriate?
- The United States has enormous needs.
 - Basic infrastructure bridges, roads, etc.
 - Other:
 - o General R&D: 2% of GDP in the 1950s, currently 0.75%.
- Is now the time to borrow extensively?
 - Have just borrowed > \$4 Trillion.
 - Interest rates are very low.
- Given the state of our infrastructure, the ROR can be very high.

67

Summary

- · Public infrastructure investment can play a vital role in long run growth
 - Improve mobility
 - Raise private capital productivity
 - Improve health
- May not be ideal as short-term stimulus
- Private sector involvement via the market process can promote innovation and efficiency
- Local access issues may sometimes be better resolved locally than federally
 - Reforms needed to make the process less cumbersome

70

Any Questions?

www.NEEDelegation.org

enter email>

Contact NEED: info@needelegation.org

Submit a testimonial: www.NEEDelegation.org/testimonials.php

Become a Friend of NEED: www.NEEDelegation.org/friend.php

71

71

Available NEED Topics Include:

- Coronavirus Economics
- US Economy
- Climate Change
- Economic Inequality
- Economic Mobility
- Trade and Globalization
- Minimum Wages

- Immigration Economics
- Housing Policy
- Federal Budgets
- Federal Debt
- Black-White Wealth Gap
- Autonomous Vehicles
- US Social Policy

72